2022

XXX Encontro de Jovens Pesquisadores

e XII Mostra Acadêmica de Inovação e Tecnologia

Instrumentação para espectroscopia de ressonância de ultrassom

PROJETO FISMAT

PIBIC CNPq

Autores: Lucas da Rosa Silva, Cláudio Antônio Perottoni

Irsilva28@ucs.br, caperott@ucs.br

INTRODUÇÃO

Técnicas de espectroscopia de ressonância vêm sendo utilizadas desde o início do século XX para a medição de propriedades elásticas de materiais.

Em particular, a espectroscopia de ressonância de ultrassom (RUS, do inglês) permite determinar simultaneamente todas as componentes do tensor de elasticidade de um material [1,2].

OBJETIVO-

Utilizar um equipamento de espectroscopia de ressonância de ultrassom para a obtenção de dados e caracterização de materiais.

MÉTODOS E MATERIAIS-

Colocou-se em operação um equipamento de RUS originalmente montado no Laboratório de Física da UCS.

O equipamento é composto por um computador com o software para controle e aquisição de dados, um amplificador *lock-in* SR844 e um gerador de sinal DS345 (ambos Stanford Research), duas placas GPIB-USB-HS, conforme Figura 1. Também foi construído um dispositivo para fixação de dois elementos piezoelétricos (atuador/sensor).

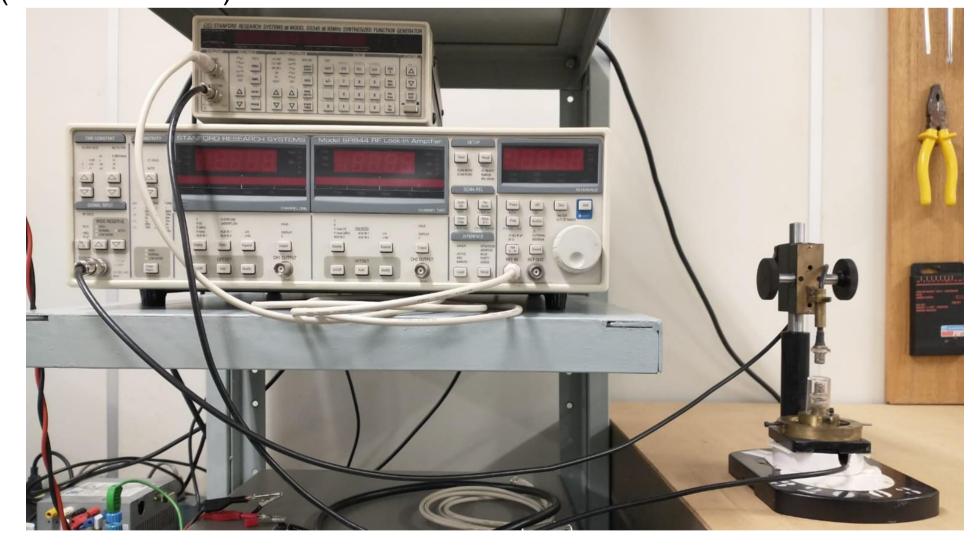


Figura 1 - Sistema de RUS montado no Laboratório de Física.

Para a instrumentação, a amostra na forma de um pequeno paralelepípedo é posicionada entre os piezoelétricos apoiada nos vértices opostos da diagonal principal (Figura 2).

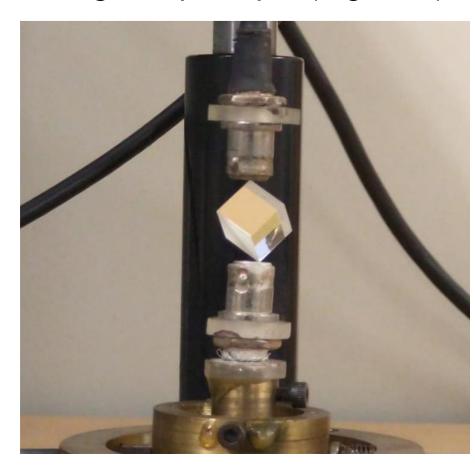


Figura 2 – Amostra de vidro posicionada entre os piezoelétricos.

MÉTODOS E MATERIAIS

Com o auxílio de um software de programação gráfica para análise dos dados obtidos através da técnica de RUS, o LabView (Figura 3). O programa gera um arquivo de saída com a frequência e a amplitude do sinal medida no amplificador *lock-in*.

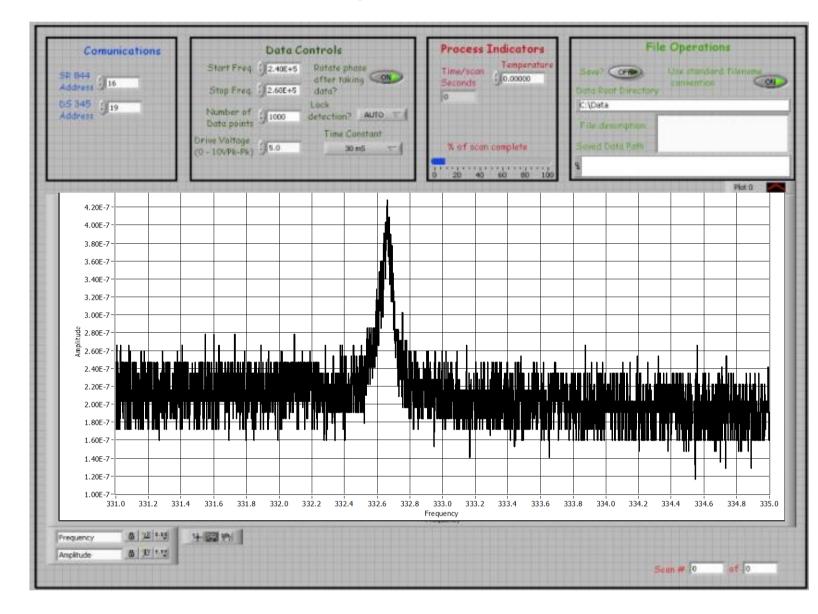


Figura 3 - Interface gráfica para controle do experimento e aquisição de dados.

Posteriormente, para determinar as frequências de ressonância da amostra foi utilizado o software Fityk [3]. Com os valores das frequências de ressonância, as dimensões e a massa da amostra, as constantes elásticas foram determinadas utilizando um programa desenvolvido por Albert Migliori (Los Alamos National Laboratory).

RESULTADOS

Para validação do equipamento, foram utilizadas duas amostras, uma de zinco e outra de vidro (Fig. 2). Uma vez determinadas as frequências de ressonância destas amostras, a próxima etapa do trabalho consiste no cálculo das constantes elásticas destes materiais.

CONSIDERAÇÕES FINAIS

Foi posto em operação um dispositivo para realizar medidas utilizando a técnica de espectroscopia de ressonância de ultrassom. Além disso, foram realizados testes com amostras de zinco e vidro para validação do equipamento.

REFERÊNCIAS BIBLIOGRÁFICAS

[1] LORENZI, R. F. d. L. Montagem de um dispositivo para espectroscopia de ressonância de ultrassom e aplicação na análise da relaxação estrutural da fase amorfa do tungstato de zircônio. Dissertação de Mestrado PPGMAT/UCS, 2012. Acesso em: 18 fev. 2022.

[2] SPOOR, P. S. Elastic Properties of Novel Materials Using PVDF Film and Resonance Ultrasound Spectroscopy. 1997. 120 p.

[3] Fityk. Disponível em https://fityk.nieto.pl/. Acessado em 23 ago. 2022.

APOIO

